DigitalFlow™
XGF868i
Flare Gas Mass Flow Ultrasonic Transmitter

Applications
The DigitalFlow XGF868i flow meter is a complete ultrasonic flow metering system for:

• Flare gas
 – Track down or prevent losses from leakage with positive material identification
 – Account for total plant throughput of material
 – Reduce cost of steam usage with proportional control
 – Conserve energy by eliminating unnecessary flaring
 – Comply with government regulations for pollution control

• Vent gas

• Hydrocarbon gases

• Biogases

• Digester gases

Features
• Measures velocity, volumetric and mass flow
• Delivers accurate flow rate, independent of gas composition
• Measures instantaneous average molecular weight
• High velocity range to 120 m/s (394 ft/s)
• Accurate low flow rate measurement
• 4000 to 1 turndown ratio
• One or two path configurations
• Allows cross flow immunity in large pipes
• Minimal maintenance due to no moving parts, no holes or tubes, and tolerance to dirty or wet conditions
• No pressure drop
• Field-proven installation techniques
• Easy serviceability
Flare Gas Mass Flow Meter

The DigitalFlow XGF868i ultrasonic flow meter uses the patented Correlation Transit-Time™ technique, digital signal processing, and an accurate method of calculating molecular weight. Add to these features the inherent advantages of ultrasonic flow measurement—reliability with no routine maintenance, high accuracy, fast response, wide rangeability—and the DigitalFlow XGF868i flow meter is the clear choice for flare gas applications.

Compact Housing

All of the DigitalFlow XGF868i’s electronic components are housed in a compact, low cost, explosionproof/flameproof transmitter package that can be installed close to the flow measurement point. This greatly simplifies wiring of the flowmeter.

Simple Installation

The flow meter system consists of a pair of transducers and insertion mechanism for each channel, and an XGF868i. The transducers can be installed as part of a flowcell, or directly into the pipe with a hot- or cold-tapping procedure. The DigitalFlow XGF868i meter can be located up to 1,000 ft (300 m) from the transducers.

Best Technology for Flare Gas

Ultrasonic flow measurement, the ideal technology for flare gas applications, is independent of gas properties, and does not interfere with the flow in any way. All-metal ultrasonic transducers installed in the pipe send sound pulses upstream and downstream through the gas. From the difference in these transit times between the transducers, with and against the flow, the DigitalFlow XGF868i’s onboard computer uses advanced signal processing and correlation detection to calculate velocity, and volumetric and mass flow rate.

\[
V = \frac{p^2}{2L} \frac{t_{up} - t_{dn}}{t_{dn} \times t_{up}}
\]

Temperature and pressure inputs enable the meter to calculate standard volumetric flow.

\[
Q_{STD} = Q_{ACT} \times \frac{P_f}{P_b} \times \frac{T_b}{T_f}
\]

- \(Q_{STD}\): Standard Volumetric flow rate
- \(Q_{ACT}\): Actual Volumetric flow rate
- \(P_f\): Flowing pressure
- \(P_b\): Base pressure
- \(T_f\): Flowing temperature
- \(T_b\): Base temperature
- \(V\): Velocity
- \(L\): Path length
- \(t_{up}\): Upstream transit time
- \(t_{dn}\): Downstream transit time

Typical meter set-up for standard volumetric or hydrocarbon mass flow

Standard transducer mounting configurations
Ideal for Flare Gas Flow Measurement

The Correlation Transit-Time technique has distinct advantages over other methods of flare gas flow measurement, and it is used to solve a variety of difficult problems. Typically, gas in flare stacks, headers or laterals is a mixture of components from different sources. Flow rate in flare systems may be unsteady or even bidirectional. Pulsating pressure, varying composition and temperature, harsh environment, and wide flow range further complicate the measurement. The XGF868i is designed for superior performance under these conditions.

One Meter, Wide Range of Flow Conditions

High Flow
The DigitalFlow XGF868i meter achieves Extended Range rangeability of 4000 to 1. It measures velocities from 0.1 to 328 ft/s (0.03 to 100 m/s) standard in both directions, while the Extended Range version measures velocities to 394 ft/s (120 m/s) in one direction. In steady or rapidly changing flow, it measures in pipes from 4 in to 120 in (100 mm to 3 m) in diameter. With this range of operation, one DigitalFlow XGF868i flowmeter performs measurements under the conditions that occur in a flare line on or offshore.

Low Flow
For base load operation, the volumetric flow in flares is often in the range 0.1 to 1 ft/s (0.03 to 0.3 m/s) and the XGF868i flare gas flow meter improves the accuracy over that range, but still measures at high velocity during facility relief or upset conditions.

A single path uses a long path to achieve accurate low flow measurements, and with the Recovery Angle on the downstream transducer, the Extended Range high flow rate is accomplished as well.

Dual-Channel Model Standard

For maximum accuracy, the standard two channel meter can be a combination of one Bias 90 path for high flow and a Diagonal 45 long path for low flow, or even two identical paths crossed to reduce cross flow error from low velocity convection flow or stratification.

A pipe with high flow (Bias 90) nozzles on top, and low flow (Diagonal 45) below

Two crossed Diagonal 45 long paths

NIST traceable test results to over 120 m/s velocity
Patented Molecular Weight Measurement Method

The DigitalFlow XGF868i uses a patented method for calculating the average molecular weight of hydrocarbon mixtures. This proprietary algorithm extends the range for measuring average molecular weight, while improving accuracy and compensating for nonhydrocarbon gases better than ever before possible. Normally sound speed in gases depends on gamma.

\[C = \sqrt{\frac{\gamma \cdot R \cdot T}{M_{W}}} \]

The algorithm in the meter relates sound speed of the gases to the average molecular weight of the gases, without a dependency on gamma, for hydrocarbon gases. Molecular weight, with temperature and pressure, allows the Mass flow to be calculated.

\[\dot{m} = \rho \cdot V \cdot A \]

\[\dot{M} = \rho \cdot V \cdot A \]

Identify Leaks, Reduce Steam Usage, Improve Plant Balance, and Comply with Emissions Regulation

Higher accuracy Mass flow data and more precise knowledge of flare gas composition can improve the efficiency of plant operation.

Leaks/Lost Product
Detection of even a small increase in flow rate into the flare system may indicate a leak source such as a partially unseated relief valve. An accompanying change in the average molecular weight of the flare gas may be used to help locate the leak source. Quick identification and elimination of leak sources into the flare system saves significant amounts of potentially lost energy and product and aids in early detection of process control problems.

Steam Injection/Mass Balance
Excess steam delivery can be a major cause of loss of product and energy. Reducing steam injection improves the overall efficiency in refinery and chemical plant operation. The DigitalFlow XGF868i can help save millions of dollars in reduced losses. Using the instantaneous average molecular weight and mass flow rate of the gas, delivery of the correct amount of steam required at the flare tip can be accurately controlled. Steam usage can be reduced. Mass flow rate may be used to perform a mass balance calculation and to control flare tip steam injection.

Emissions Compliance
Maintaining compliance with pollution control regulations requires measurement at low flow and at high flow, and verification of meter performance. The sound speed and other diagnostics allow easy meter verification while measuring over this wide flow range.

Low Operational Costs
Because the DigitalFlow XGF868i installation produces no flow obstruction, the energy-robbing pressure drops and high maintenance requirements characteristic of other flow meters are eliminated. The special sealed metal transducers supplied with a DigitalFlow XGF868i system are immune to the erosion and stress caused by thermal expansion cycles.

Payback for the entire DigitalFlow XGF868i installation usually occurs within a matter of months.
XGF868i Specifications

Operation and Performance

Fluid Types
Flare and vent gases

Pipe Materials
All metals, fiberglass. Consult GE for other materials.

Flow Accuracy

Pipe Sizes	1/4 in to 12 in NB ANSI (350 to 3000 mm)		
Flow Accuracy	One Path	Two path	
High Flow Range	±1.0 to ±394 ft/s (±0.3 to ±120 m/s)	±2.0%	±1.5%
Low Flow Range	±0.1 to ±1.0 ft/s (±0.03 to ±0.3 m/s)	±0.008 ft/s (±0.002 m/s)	±0.0057 ft/s (±0.0017 m/s)
Molecular Weight Accuracy	2 to 120 gr/gr mole	±1.8% of reading	
Mass Flow Accuracy	±2.7%	±1.9%	
Repeatability	1 to 394 ft/s (±0.3 m/s to 120 m/s)	±0.5 to 1.0%	
	0.1 to <1.0 ft/s (±0.03 to <0.3 m/s)	±5 to 6%	
Rangeability (Overall)	4000:1		

Note 1: For pipe size 4 to 12" NB, accuracy ranges from 1.5 to 4% for 1 ft/s (0.3 m/s) and greater. Please consult GE for details.

Note 2: Dependent on accuracy of temperature and pressure inputs.

Note 3: Accuracy stated assumes fully developed flow profile. Recommended minimum straight pipe is 20 diameters upstream and 10 diameters downstream.

Note 4: Consult GE for accuracy of non-standard transducer types.

Note 5: Accuracy to 0.5% may be achieved with calibration.

Electronics

Flow Measurement
Patented Correlation Transit-Time mode

Enclosures
- Standard: Epoxy-coated aluminum
- Hazardous Area Rating:
 - Explosion-proof: Class 1, Division 1, Groups B, C and D
 - Flameproof: ISSeP 07ATEX015
- II 2 G Ex d IIC T5 IP66
- IECEx: FM G 0011x
- II 2 G Ex d IIC T6 Gb IP66
- Optional: Stainless steel

Channels
Standard: Two channels (for two-path averaging)

Display
2 line × 16 character backlit LCD display, configurable to display up to four measurement parameters in sequence

Keypad
Built-in infrared, six-button keypad for full functionality operation

Power Supplies
- Standard: 100-240 VAC
- Optional: 12 to 28 VDC, ±5%

Power Consumption
20 W maximum

Operating Temperature
-40°F to 140°F (-40°C to 60°C)

Storage Temperature
-67°F to 167°F (-55°C to 75°C)

Standard Inputs/Outputs
Two 0/4 to 20 mA isolated outputs, 600 Ω maximum load
Two 4 to 20 mA isolated inputs, 24 VDC loop power, or
One 4 to 20 mA isolated inputs, 24 VDC loop power, one direct three-wire RTD (temperature) input, -148°F to 662°F (-100°C to 350°C), 100 Ω platinum

Optional Inputs/Outputs
- Two frequency outputs, optically isolated, 3 A maximum, 100 VDC maximum, 1 W maximum, from DC to 10 KHz maximum

Digital Interfaces
- Standard: RS232 (PanaView PC software)
- HART® protocol on 4-20 mA output
- Optional: Modbus® RS485 or TCP/IP
- Optional: Ethernet
- Optional: OPC server
- Optional: Foundation Fieldbus®

European Compliance
System complies with EMC Directive 2004/108/EC, 2006/95/EC LVD (Installation Category II, Pollution Degree 2) and transducers comply with PED 97/23/EC for DN<25
Wetted Ultrasonic Flow Transducers

Temperature Range
- Overall: -364°F to 536°F (-220°C to 280°C)
Transducer type selection is based on specific application review.

Pressure Range
Standard: -2 psig to 1500 psig (87.6 to 10300 kPa)

Materials
- Standard: Titanium
- Optional: Monel® or Hastelloy® alloys

Process Connections
Flanged and compression fittings

Area Classifications
- Standard: Explosion-proof Class I, Division 1, Groups C,&D.
 Flameproof II 2 G Ex d IIC T4, T3 or T2 Gb.
 IECEx Ex d IIC T4, T3 or T2 Gb.
- Optional: Div. 1, Class 1, Group B

Insertion Mechanism

Standard Range
- 3 in (76 mm) flange mounted packing gland and valve
 at equal mounting angle both up and downstream

Extended Velocity Range
- 3 in (76 mm) flange mounted packing gland and valve
 with Recovery Angle in downstream assembly

Preamplifier
In-line powered preamplifier with transformer and BNC connections. One preamp/transformer per transducer per channel.

Gain
- Standard: 20
- Optional: 2, 10, 40 (factory selected)

Temperature Range
-40°C to +60°C (-40°F to +140°F)

Enclosure
- Explosionproof
 Div. 1, Class I, Group C, D
 Optional: Group B upon request
- ATEX Flameproof
 II 2 G Ex d IIC T4, T3 or T2 Gb
- IECEx Flameproof
 Ex d IIC T4, T3 or T2

Transducer Cables
- Standard: (per pair of transducers)
 - One pair of coaxial cables, type RG62A/U, transducer to preamplifier, 3 m (10 ft) length, if required.
 - One pair of coaxial cables, type RG62 A/U, preamplifier to XGF868i electronics, lengths 3 m (10 ft) to 330 m (1000 ft) maximum
- Optional: flame retardant, armored cable; cable glands

Pressure and Temperature Transducers
Available upon request.

Additional Options

PanaView™ PC-Interface Software
The DigitalFlow XGF868i communicates with a PC through a serial interface and Windows® operating systems. Features include site files, logs and other operations with a PC.

Installation Flowcells
Flanged/plain-end spool piece
Hot tap or cold tap
Transducers and flowcells for specific applications are available. Consult GE for details.